

Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Supplementary Lecture: Kernel Methods

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

lions@epfl

aws

swisscom

HASLERSTIFTUNG

SDSC
ZEISS

FN
FONDS NATIONAL SUISSE
DESSOUSCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWISS NATIONAL SCIENCE FOUNDATION

erc
EPFL

License Information for Mathematics of Data Slides

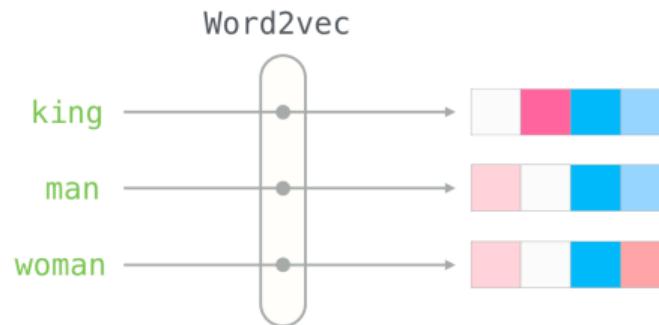
- ▶ This work is released under a [Creative Commons License](#) with the following terms:
- ▶ **Attribution**
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- ▶ **Non-Commercial**
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- ▶ **Share Alike**
 - ▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ▶ [Full Text of the License](#)

Motivation: Feature embeddings

- Feature embeddings serve to map datasets from a set \mathcal{A} to a more convenient set \mathcal{H} .
- For example, if \mathcal{A} is non numerical data, it can be embedded into a subset of \mathbb{R}^p .

Example

Vector space models of language represent each word with a real-valued vector (Word2vec [7], GloVe [8]).



<https://jalammar.github.io/illustrated-word2vec/>

Motivation: Feature embeddings II

- If \mathcal{A} is already numerical, it can also be embedded into a more suitable space.

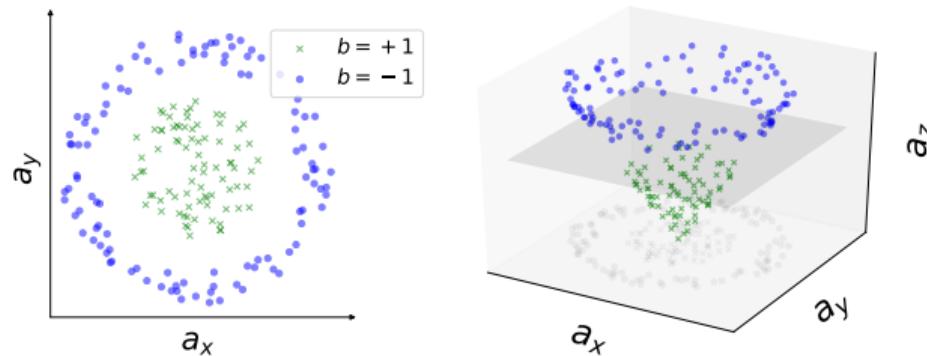


Figure: Non-linearly separable data (left). Linearly separable in \mathbb{R}^3 via $a_z = \sqrt{a_x^2 + a_y^2}$ (right).

Kernels (Informal)

Denote by $\phi : \mathcal{A} \rightarrow \mathcal{H}$ the feature embedding that maps data points to elements of a feature space \mathcal{H} . The kernel $K(\mathbf{a}, \mathbf{b})$ is defined as the inner-product between the feature embeddings:

$$K(\mathbf{a}, \mathbf{b}) := \langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle.$$

Remarks:

- o Roughly speaking, $K(\mathbf{a}, \mathbf{b})$ represents the similarity between \mathbf{a} and \mathbf{b} :

$$K(\mathbf{a}, \mathbf{b}) = \text{“Comparison between } \mathbf{a} \text{ and } \mathbf{b} \text{.”}$$

- o The feature embedding ϕ helps measure this similarity.
- o Examples of ϕ are given later in the slides.
- o In the sequel, we study feature embeddings in spaces \mathcal{H} with an inner-product.

Useful definitions

Inner product for real vector spaces

Let \mathcal{H} be an \mathbb{R} -vector space. A binary operation denoted $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is said to be an *inner product* if it verifies the following three properties:

- ▶ **Linearity:** For any $f \in \mathcal{H}$, the functions $g \mapsto \langle f, g \rangle_{\mathcal{H}}$ and $g \mapsto \langle g, f \rangle_{\mathcal{H}}$ are linear.
- ▶ **Symmetry:** For any $f, g \in \mathcal{H}$, we have $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$
- ▶ **Positive definiteness:** $\langle f, f \rangle_{\mathcal{H}} = 0 \Leftrightarrow f = 0$.

Hilbert space

Let \mathcal{H} be an \mathbb{R} -vector space that admits an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. The inner-product defines the following norm on \mathcal{H}

$$\|f\|_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}.$$

If \mathcal{H} is complete with respect to this norm, then $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is called a *Hilbert space*.

Remarks:

- A complete space is a space with “no holes,” i.e., all Cauchy sequences converge [14].
- See Linear Algebra Supplementary Material for more details.

Positive definite kernels

From feature embeddings to Kernels [1]

Let $\phi : \mathcal{A} \rightarrow \mathcal{H}$ be a feature embedding into a feature space \mathcal{H} the kernel K defined as

$$K(\mathbf{a}, \mathbf{b}) := \langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle_{\mathcal{H}}$$

is a *positive definite kernel*.

Definition

A mapping $K : \mathcal{A} \times \mathcal{A} \mapsto \mathbb{R}$ is called a *positive definite kernel* if

- ▶ For all $\mathbf{a}, \mathbf{b} \in \mathcal{A}$, $K(\mathbf{a}, \mathbf{b}) = K(\mathbf{b}, \mathbf{a})$.
- ▶ For any set of points $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathcal{A}$, the matrix

$$\mathbf{K}_{ij} = K(\mathbf{a}_i, \mathbf{a}_j) \text{ is positive semi-definite.}$$

Remark:

- There exists a rich theory of positive definite kernels: see [11].

From kernels to embeddings in a feature space

- The converse is true: A positive definite kernel K implicitly defines a feature mapping.

Positive definite Kernels to feature embeddings [1]

Let $K : \mathcal{A} \times \mathcal{A} \mapsto \mathbb{R}$ be a positive definite kernel. Then there exists a feature space \mathcal{H} and a feature mapping $\phi : \mathcal{A} \rightarrow \mathcal{H}$ such that

$$K(\mathbf{a}, \mathbf{b}) = \langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle_{\mathcal{H}}.$$

Observation:

- Defining a positive definite similarity measure between the elements of your dataset
≡ defining a feature embedding.

Building positive definite kernels from feature embeddings

Example

Take $\mathcal{A} = \mathbb{R}$. For any $a \in \mathcal{A}$, we can define the feature embedding ϕ that computes the powers of a :

$$\phi(a) := \begin{bmatrix} 1 & a & a^2 & \dots & a^5 \end{bmatrix} \in \mathbb{R}^6.$$

The similarity measure K , as defined as an inner product between elements of \mathbb{R}^6 , such as

$$K(a, b) := \langle \phi(a), \phi(b) \rangle_{\mathbb{R}^6} = \phi(a)^\top \phi(b)$$

is a positive definite kernel.

Embeddings in a feature space: continued example

Example

To prove this, consider a set of points $a_1, \dots, a_n \in \mathcal{A}$, then for any $x \in \mathbb{R}^n$, we have

$$\begin{aligned} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} \cdots & & \\ \vdots & K(a_i, a_j) & \vdots \\ & \dots & \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} &= \sum_{i=1}^n \sum_{j=1}^n x_i x_j K(a_i, a_j) = \sum_{i=1}^n \sum_{j=1}^n x_i x_j \langle \phi(a_i), \phi(a_j) \rangle_{\mathbb{R}^6} \\ &= \left\langle \sum_{i=1}^n x_i \phi(a_i), \sum_{j=1}^n x_j \phi(a_j) \right\rangle_{\mathbb{R}^6} \\ &= \left\| \sum_{i=1}^n x_i \phi(a_i) \right\|_{\mathbb{R}^6}^2 \geq 0. \end{aligned}$$

Possibly infinite dimensional spaces

Example

Take $\mathcal{A} = (-1, 1)$. For any $a \in \mathcal{A}$, we can define a feature embedding ϕ that computes the *all* the powers of a :

$$\phi(a) := (a^i)_{i=0}^{\infty}.$$

We can then define the kernel

$$K(a, b) := \langle \phi(a), \phi(b) \rangle_{\mathcal{H}} := \sum_{i=0}^{\infty} \phi(a)_i \phi(b)_i = \frac{1}{1 - ab}.$$

Observation:

- The feature embedding need not be finite dimensional.

Positive definite kernels II

- New kernels can be constructed from existing kernels.

Kernel operations

Let K_1, K_2 be positive definite kernels (PDKs), then it holds that

- ▶ $K_1 + K_2$ is a PDK.
- ▶ $K_1 K_2$ is a PDK.
- ▶ For any $\lambda \geq 0$, λK_1 is a PDK.

Table: Table of commonly used kernels (K_ν is the Bessel function of order ν , c, d are the bias and degree respectively, σ^2 is the Gaussian bandwidth, l, ℓ are length scales, T is the period)

Name	\mathcal{A}	Kernel
Linear	\mathbb{R}^p	$\mathbf{a}^\top \mathbf{b}$
Polynomial	\mathbb{R}^p	$(\mathbf{a}^\top \mathbf{b} + c)^d$
Gaussian	\mathbb{R}^p	$\exp \frac{-\ \mathbf{a}-\mathbf{b}\ ^2}{2\sigma^2}$
Matern	\mathbb{R}^p	$\frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{\sqrt{2\nu}}{l} d(\mathbf{a}, \mathbf{b}) \right)^\nu K_\nu \left(\frac{\sqrt{2\nu}}{l} d(\mathbf{a}, \mathbf{b}) \right)$
Laplace	\mathbb{R}^p	$\exp \frac{-\ \mathbf{a}-\mathbf{b}\ }{\sigma}$
Periodic	\mathbb{R}	$\sigma \exp -\frac{2 \sin^2(\pi \ \mathbf{a}-\mathbf{b}\ /T)}{\ell^2}$

A special feature space of interest: the RKHS

- Given a positive definite kernel K , there can be several feature spaces \mathcal{H} such that

$$K(\mathbf{a}, \mathbf{b}) = \langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle_{\mathcal{H}}.$$

- However, there exists *a unique Hilbert space* \mathcal{H} of functions $\mathcal{A} \rightarrow \mathbb{R}$ that verify the property below.
- In this case, the embedding ϕ_K maps each datapoint a to a function $\phi_K(a) = (b \mapsto K(a, b))$

Reproducing Kernel Hilbert Space (RKHS) [1]

Let K be a positive definite kernel. There exists a unique Hilbert space $\mathcal{H} \subset \{\text{functions } \mathcal{A} \rightarrow \mathbb{R}\}$ such that the following properties hold:

- For all $a \in \mathcal{A}$, the embedding $\phi_K(a) = (b \mapsto K(a, b))$ is in \mathcal{H} .
- The reproducing property: $\forall f \in \mathcal{H}, \forall a \in \mathcal{A}, \quad f(a) = \langle \phi_K(a), f \rangle_{\mathcal{H}}$.

The space \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS) and K is called the reproducing kernel of \mathcal{H} .

The reproducing property

Example

We continue the example of the feature map $\phi(a) = [1 \quad a \quad a^2 \quad \dots \quad a^5] \in \mathbb{R}^6$.

Now define the function

$$f(a) = x_0 + x_1 a + \dots + x_5 a^5.$$

This function is a member of a space of functions mapping from $\mathcal{A} = \mathbb{R}^6$ to \mathbb{R} . f can be equivalently represented as

$$f(\cdot) = [x_0 \quad x_1 \quad \dots \quad x_5].$$

With the above notation, we can write

$$f(a) = f(\cdot)^\top \phi(a) := \langle f, \phi(a) \rangle_{\mathbb{R}^6}.$$

Optimizing over the RKHS

- The RKHS is a space of functions that can be used as a hypothesis space for classification, regression, etc.

ERM over an RKHS

We can consider the problem of minimizing the empirical risk over \mathcal{H} :

$$h^* \in \arg \min_{h \in \mathcal{H}} \left\{ R_n(h) := \frac{1}{n} \sum_{j=1}^n L(h(\mathbf{a}_j), b_j) \right\}.$$

Remarks:

- The space of functions \mathcal{H} is not necessarily finite dimensional!
- *A priori*, this optimization problem is not implementable.

Towards implementation: A first observation

Observation

Notice that the objective function only depends on the evaluations of f on the points $\mathbf{a}_1, \dots, \mathbf{a}_n$:

$$R_n(h) := \frac{1}{n} \sum_{j=1}^n L(\mathbf{h}(\mathbf{a}_i), b_j).$$

Remarks:

- Using the reproducing property we can write the objective as a function of inner-products:

$$R_n(h) := \frac{1}{n} \sum_{j=1}^n L(\langle \mathbf{h}, \phi_K(\mathbf{a}_j) \rangle_{\mathcal{H}}, b_j).$$

- The function h *is only seen through its inner products* with $\{\phi_K(\mathbf{a}_1), \dots, \phi_K(\mathbf{a}_n)\}$.
- This observation is key to proving the representer theorem (next slide).

The Representer Theorem (Informal)

The Representer Theorem [1]

Consider the following **regularized version** of our optimization problem

$$h^* \in \arg \min_{h \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{j=1}^n L(h(\mathbf{a}_j), b_j) + \lambda \|h\|_{\mathcal{H}}^2 \right\}.$$

where $\lambda > 0$ is some chosen parameter and L **is convex**. This strongly convex problem admits a unique solution h^* . The representer theorem states that this solution lives in the **span** $\{\phi_K(\mathbf{a}_1), \dots, \phi_K(\mathbf{a}_n)\}$. In other words, there exists $\alpha_1, \dots, \alpha_n$ such that

$$h^* = \sum_{i=1}^n \alpha_i K(\mathbf{a}_i, \cdot),$$

where K is the reproducing kernel of \mathcal{H} .

Remark:

- o The solution h^* lies in a finite dimensional subspace.
- o The resulting is a non-parametric model.

Implications of the representer theorem

Tractable formulation

Let \mathbf{K} denote the symmetric, positive semi-definite matrix $\mathbf{K} = (K(\mathbf{a}_i, \mathbf{a}_j))_{i,j}$. Regularized ERM over the RKHS \mathcal{H} reduces to the following finite dimensional problem:

$$\alpha^* \in \arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{j=1}^n L([\mathbf{K}\alpha]_j, b_j) + \lambda \alpha^T \mathbf{K} \alpha \right\}. \quad (1)$$

Remark:

- Any linear model, with feature embedding ϕ , reduces to this with $(\mathbf{K})_{i,j} = \langle \phi(x_i), \phi(x_j) \rangle$.

Example: Kernel ridge regression

Example:

- Take L to be the square loss and the kernel to be the Gaussian kernel $K_\sigma(a, b) = \exp \frac{(a-b)^2}{2\sigma^2}$.

$$\alpha^* \in \arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \|\mathbf{K}\alpha - \mathbf{b}\|_2^2 + \lambda \alpha^T \mathbf{K} \alpha \right\}.$$

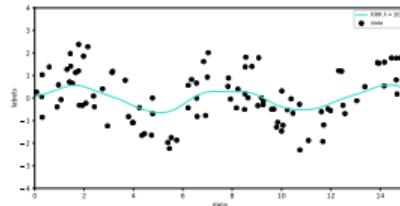
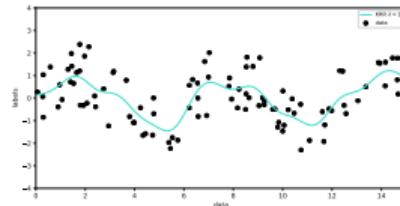
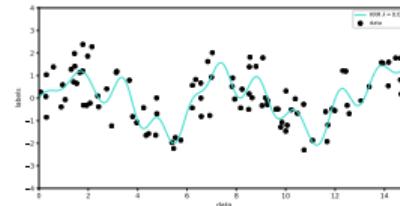


Figure: Kernel ridge regression with decreasing regularization λ

Remark:

- The scale parameter σ can be chosen through cross validation or clever heuristics, see [4].

Computational complexity

Remarks:

- The tractable formulation uses the $n \times n$ kernel matrix \mathbf{K} .
- Storage and computational complexity tend to scale with n^2 and n^3 respectively.
- This quickly becomes infeasible for large n .

Approximation methods for large n

- **Nyström method [13]:** substitute \mathbf{K} with a low-rank approximation $\mathbf{K} \approx \mathbf{U}^T \mathbf{U}$ where \mathbf{U} is $r \times n$ for some $r < n$.
 - ▶ Storage and computational complexity scale with nr and nr^2 respectively.
- **Random Fourier features [9]:** For some translation invariant kernels, it holds that $K(\mathbf{a}, \mathbf{b}) = \mathbb{E}[\varphi(\mathbf{a})\varphi(\mathbf{b})]$. A Monte Carlo approximation of this expectation is obtained by taking D random samples.
 - ▶ Storage and computational complexity scale with nD and nD^2 respectively.

Remark:

- Large-scale kernel methods are an active research area.
- See for instance FALKON [10, 6] which extends Nyström methods to achieve optimal rates.

Deep Learning's recent interest in kernel theory

- For convenience, we deviate from the course's notation of neural networks and write $h(\mathbf{a}, \mathbf{x})$ for $h_{\mathbf{x}}(\mathbf{a})$

First order Taylor approximation

Consider a neural network $h : \mathbf{a} \mapsto h(\mathbf{a}, \mathbf{x})$ initialized with the weights \mathbf{x}_0 . A first-order Taylor expansion of around \mathbf{x}_0 yields

$$h_0(\mathbf{a}, \mathbf{x}) = h_{\mathbf{x}}(\mathbf{a}, \mathbf{x}_0) + \left\langle \frac{\partial h}{\partial \mathbf{x}}(\mathbf{a}, \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \right\rangle$$

Remarks:

- h_0 is an affine function of the weights \mathbf{x} , so it falls under the well understood family of linear models.
- If h is close to h_0 , then theorems for linear models would transfer to f .

Under which conditions is a neural network h is close to h_0 , its linearization at initialization ?

The Neural Tangent Kernel

Observations:

- The approximation h_0 is a linear model over features of the data: the training samples are embedded in a feature space by the mapping $\mathbf{a} \mapsto \frac{\partial h}{\partial \mathbf{x}}(\mathbf{a}, \mathbf{x}_0)$.
- This feature space can be studied through the kernel

$$K_{\mathbf{x}_0}(\mathbf{a}, \mathbf{b}) = \left\langle \frac{\partial h}{\partial \mathbf{x}}(\mathbf{a}, \mathbf{x}_0), \frac{\partial h}{\partial \mathbf{x}}(\mathbf{b}, \mathbf{x}_0) \right\rangle.$$

- The initialization \mathbf{x}_0 is random, so the kernel $K_{\mathbf{x}_0}$ is also random.

The Neural Tangent Kernel (See [5] Thm 1 or [2] Thm 3.1 for a precise statement.)

Under appropriately scaled random initialization \mathbf{x}_0 , the random kernel $K_{\mathbf{x}_0}$ tends to a deterministic kernel K_∞ as the width of the network goes to infinity:

$$\lim_{\text{width} \rightarrow \infty} K_{\mathbf{x}_0} = K_\infty$$

This deterministic limiting kernel is called *the Neural Tangent Kernel* (NTK).

- For sufficiently wide networks, we can study this deterministic kernel and derive properties on h_0 .

The NTK in practice

- From a theory perspective, NTK theory is used to prove global convergence of first-order methods in neural network training [3].

Remarks:

- Explicit formulas for the NTK of both fully-connected and convolutional architectures have been computed [2].
- This makes it possible to solve learning tasks with infinitely wide networks.

Performance of infinitely wide networks on CIFAR-10 [2]

Least-square classification on the CIFAR-10 dataset with the NTK of an 11-layer convolutional network achieves 77% classification accuracy on CIFAR-10. It is still below the accuracy of finite width networks (> 98%).

Remarks:

- Two learning regimes:
 - Neural network regime: parametric model for feature learning.
 - Kernel regime: non-parametric model of size growing with number of samples.

Transformer attention as a Kernel I

- Attention mechanism in Transformers can be reformulated as a form of kernel smoothing [12].
- Intuition: both kernel learning and Transformers concurrently process all inputs and calculate the similarity between them.

Attention Mechanism:

- Given a query token \mathbf{b}_q and a set of key tokens $\mathcal{S}_{\mathbf{b}_k}$, the attention output is the kernel smoothing:

$$\text{Attention}(\mathbf{b}_q; M(\mathbf{b}_q, \mathcal{S}_{\mathbf{b}_k})) = \sum_{\mathbf{b}_k \in M(\mathbf{b}_q, \mathcal{S}_{\mathbf{b}_k})} \frac{K(\mathbf{b}_q, \mathbf{b}_k)}{\sum_{\mathbf{b}'_k \in M(\mathbf{b}_q, \mathcal{S}_{\mathbf{b}_k})} K(\mathbf{b}_q, \mathbf{b}'_k)} v(\mathbf{b}_k).$$

Transformer attention as a Kernel II

Key Components:

- **Kernel function** $K(\cdot, \cdot)$: Measures similarity between tokens. Canonical softmax attention is $K(\mathbf{b}_q, \mathbf{b}_k) = \exp(\mathbf{b}_q \mathbf{X}_q (\mathbf{b}_k \mathbf{X}_k)^\top)$.
- **Set filtering function** $M(\cdot, \cdot)$: Determines relevant tokens. Plays the role of the mask in causal attention.
- **Value function** $v(\cdot)$: Provides the values to be weighted. Usually $v(\mathbf{b}_k) = \mathbf{b}_k \mathbf{X}_v$.

Remarks:

- Attention is computed as learnable kernel functions measuring similarity between input tokens.
- Canonical self-attention uses an asymmetric exponential kernel.

References I

- [1] N. Aronszajn.
Theory of reproducing kernels.
Trans. Amer. Math. Soc., 68(3):337–404, 1950.
(Cited on pages 7, 8, 13, and 17.)
- [2] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net.
Advances in Neural Information Processing Systems, 32, 2019.
(Cited on pages 22 and 23.)
- [3] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh.
Gradient descent provably optimizes over-parameterized neural networks.
arXiv preprint arXiv:1810.02054, 2018.
(Cited on page 23.)
- [4] Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa.
Large sample analysis of the median heuristic.
arXiv preprint arXiv:1707.07269, 2017.
(Cited on page 19.)

References II

[5] Arthur Jacot, Franck Gabriel, and Clément Hongler.
Neural tangent kernel: Convergence and generalization in neural networks.
In *Advances in neural information processing systems*, pages 8571–8580, 2018.
(Cited on page 22.)

[6] Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi.
Kernel methods through the roof: handling billions of points efficiently.
In *Advances in Neural Information Processing Systems*, volume 33, 2020.
(Cited on page 20.)

[7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems, 26, 2013.
(Cited on page 3.)

[8] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
Glove: Global vectors for word representation.
In *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pages 1532–1543, 2014.
(Cited on page 3.)

References III

[9] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.
In *Advances in Neural Information Processing Systems*, pages 1177–1184, 2007.
(Cited on page 20.)

[10] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco.
Falkon: An optimal large scale kernel method.
Advances in neural information processing systems, 30, 2017.
(Cited on page 20.)

[11] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al.
Learning with kernels: support vector machines, regularization, optimization, and beyond.
MIT press, 2002.
(Cited on page 7.)

[12] Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov.
Transformer dissection: An unified understanding for transformer's attention via the lens of kernel.
In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 4344–4353, 2019.
(Cited on page 24.)

References IV

- [13] Christopher Williams and Matthias Seeger.
Using the nyström method to speed up kernel machines.
Advances in neural information processing systems, 13, 2000.
(Cited on page 20.)
- [14] Nicholas Young.
An introduction to Hilbert space.
Cambridge university press, 1988.
(Cited on page 6.)