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Motivation: Feature embeddings

◦ Feature embeddings serve to map datasets from a set A to a more convenient set H.

◦ For example, if A is non numerical data, it can be embedded into a subset of Rp.

Example
Vector space models of language represent each word with a real-valued vector (Word2vec [7], GloVE [8]).

https://jalammar.github.io/illustrated-word2vec/
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Motivation: Feature embeddings II

◦ If A is already numerical, it can also be embedded into a more suitable space.

ax

a y

b = + 1
b = 1

Figure: Non-linearly separable data (left). Linearly separable in R3 via az =
√

a2
x + a2

y (right).
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Kernels

Kernels (Informal)
Denote by ϕ : A → H the feature embedding that maps data points to a elements of a feature space H.
The kernel K(a, b) is defined as the inner-product between the feature embeddings:

K(a, b) := ⟨ϕ(a), ϕ(b)⟩.

Remarks: ◦ Roughly speaking, K(a, b) represents the similarity between a and b:

K(a, b) = “Comparison between a and b.”

◦ The feature embedding ϕ helps measure this similarity.

◦ Examples of ϕ are given later in the slides.

◦ In the sequel, we study feature embeddings in spaces H with an inner-product.
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Useful definitions

Inner product for real vector spaces
Let H be an R-vector space. A binary operation denoted ⟨·, ·⟩H : H × H → R is said to be an inner product if it
verifies the following three properties:
▶ Linearity: For any f ∈ H, the functions g 7→ ⟨f, g⟩H and g 7→ ⟨g, f⟩H are linear.
▶ Symmetry: For any f, g ∈ H, we have ⟨f, g⟩H = ⟨g, f⟩H
▶ Positive definiteness: ⟨f, f⟩H = 0 ⇔ f = 0.

Hilbert space
Let H be an R-vector space that admits an inner product ⟨·, ·⟩H. The inner-product defines the following norm
on H

∥f∥H :=
√

⟨f, f⟩H.

If H is complete with respect to this norm, then (H, ⟨·, ·⟩H) is called a Hilbert space.

Remarks: ◦ A complete space is a space with “no holes,” i.e., all Cauchy sequences converge [14].

◦ See Linear Algebra Supplementary Material for more details.
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Positive definite kernels

From feature embeddings to Kernels [1]
Let ϕ : A → H be a feature embedding into a feature space H the kernel K defined as

K(a, b) := ⟨ϕ(a), ϕ(b)⟩H

is a positive definte kernel.

Definition
A mapping K : A × A 7→ R is called a positive definite kernel if
▶ For all a, b ∈ A, K(a, b) = K(b, a).
▶ For any set of points a1, . . . , an ∈ A, the matrix

Kij = K(ai, aj) is positive semi-definite.

Remark: ◦ There exists a rich theory of positive definite kernels: see [11].
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From kernels to embeddings in a feature space

◦ The converse is true: A positive definite kernel K implicitly defines a feature mapping.

Positive definite Kernels to feature embeddings [1]
Let K : A × A 7→ R be a positive definite kernel. Then there exists a feature space H and a feature mapping
ϕ : A → H such that

K(a, b) = ⟨ϕ(a), ϕ(b)⟩H .

Observation: ◦ Defining a positive definite similarity measure between the elements of your dataset
≡ defining a feature embedding.
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Building positive definite kernels from feature embeddings

Example
Take A = R. For any a ∈ A, we can define the feature embedding ϕ that computes the powers of a:

ϕ(a) :=
[
1 a a2 . . . a5

]
∈ R6.

The similarity measure K, as defined as an inner product between elements of R6, such as

K(a, b) := ⟨ϕ(a), ϕ(b))⟩R6 = ϕ(a)⊤ϕ(b)

is a positive definite kernel.
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Embeddings in a feature space: continued example

Example
To prove this, consider a set of points a1, . . . , an ∈ A, then for any x ∈ Rn, we have

[
x1 . . . xn

]  . . .

... K(ai, aj)
...

. . .

 x1
...

xn

 =
n∑

i=1

n∑
j=1

xixjK(ai, aj) =
n∑

i=1

n∑
j=1

xixj⟨ϕ(ai), ϕ(aj)⟩R6

=

〈
n∑

i=1

xiϕ(ai),
n∑

j=1

xjϕ(aj)

〉
R6

= ∥
n∑

i=1

xiϕ(ai) ∥2
R6 ≥ 0.
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Possibly infinite dimensional spaces

Example
Take A = (−1, 1). For any a ∈ A, we can define a feature embedding ϕ that computes the all the powers of a:

ϕ(a) := (ai)∞
i=0.

We can then define the kernel

K(a, b) := ⟨ϕ(a), ϕ(b)⟩H :=
∞∑

i=0

ϕ(a)iϕ(b)i =
1

1 − ab
.

Observation: ◦ The feature embedding need not be finite dimensional.
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Positive definite kernels II

◦ New kernels can be constructed from existing kernels.

Kernel operations
Let K1, K2 be positive definite kernels
(PDKs), then it holds that
▶ K1 + K2 is a PDK.
▶ K1K2 is a PDK.
▶ For any λ ≥ 0, λK1 is a PDK.

Table: Table of commonly used kernels (Kν is the Bessel function of order
ν, c, d are the bias and degree respectively, σ2 is the Gaussian bandwidth,
l, ℓ are length scales, T is the period)

Name A Kernel
Linear Rp a⊤b
Polynomial Rp (a⊤b + c)d

Gaussian Rp exp −∥a−b∥2

2σ2

Matern Rp 1
Γ(ν)2ν−1

( √
2ν
l

d(a, b)
)ν

Kν

( √
2ν
l

d(a, b)
)

Laplace Rp exp −∥a−b∥
σ

Periodic R σ exp − 2 sin2(π|a−b|/T )
ℓ2
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A special feature space of interest: the RKHS

◦ Given a positive definite kernel K, there can be several feature spaces H such that

K(a, b) = ⟨ϕ(a), ϕ(b)⟩H .

◦ However, there exists a unique Hilbert space H of functions A → R that verify the property below.

◦ In this case, the embedding ϕK maps each datapoint a to a function ϕK(a) = (b 7→ K(a, b))

Reproducing Kernel Hilbert Space (RKHS) [1]
Let K be a positive definite kernel. There exists a unique Hilbert space H ⊂ {functions A → R} such that the
following properties hold:

1. For all a ∈ A, the embedding ϕK(a) = (b 7→ K(a, b)) is in H.
2. The reproducing property: ∀f ∈ H, ∀a ∈ A, f(a) = ⟨ϕK(a), f⟩H.

The space H is called a Reproducing Kernel Hilbert Space (RKHS) and K is called the reproducing kernel of H.
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The reproducing property

Example
We continue the example of the feature map ϕ(a) =

[
1 a a2 . . . a5

]
∈ R6.

Now define the function
f(a) = x0 + x1a + · · · + x5a5.

This function is a member of a space of functions mapping from A = R6 to R. f can be equivalently
represented as

f(·) =
[
x0 x1 . . . x5

]
.

With the above notation, we can write

f(a) = f(·)⊤ϕ(a) := ⟨f, ϕ(a)⟩R6 .
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Optimizing over the RKHS

◦ The RKHS is a space of functions that can be used as a hypothesis space for classification, regression, etc.

ERM over an RKHS
We can consider the problem of minimizing the empirical risk over H:

h⋆ ∈ arg min
h∈H

{
Rn(h) :=

1
n

n∑
j=1

L(h(aj), bj)

}
.

Remarks: ◦ The space of functions H is not necessarily finite dimensional!
◦ A priori, this optimization problem is not implementable.
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Towards implementation: A first observation

Observation
Notice that the objective function only depends on the evaluations of f on the points a1, . . . , an:

Rn(h) :=
1
n

n∑
j=1

L(h(ai), bj).

Remarks: ◦ Using the reproducing property we can write the objective as a function of inner-products:

Rn(h) :=
1
n

n∑
j=1

L(⟨h, ϕK(aj)⟩H, bj).

◦ The function h is only seen through its inner products with {ϕK(a1), . . . , ϕK(an)}.

◦ This observation is key to proving the representer theorem (next slide).
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The Representer Theorem (Informal)

The Representer Theorem [1]
Consider the following regularized version of our optimization problem

h⋆ ∈ arg min
h∈H

{
1
n

n∑
j=1

L(h(aj), bj)+λ∥h∥2
H

}
.

where λ > 0 is some chosen parameter and L is convex. This strongly convex problem admits a unique solution
h⋆. The representer theorem states that this solution lives in the span{ϕK(a1), . . . , ϕK(an)}. In other words,
there exists α1, . . . , αn such that

h⋆ =
n∑

i=1

αiK(ai, ·),

where K is the reproducing kernel of H.

Remark: ◦ The solution h⋆ lies in a finite dimensional subspace.
◦ The resulting is a non-parametric model.
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Implications of the representer theorem

Tractable formulation
Let K denote the symmetric, positive semi-definite matrix K = (K(ai, aj))i,j . Regularized ERM over the
RKHS H reduces to the following finite dimensional problem:

α⋆ ∈ arg min
α∈Rn

{
1
n

n∑
j=1

L([Kα]j , bj) + λαT Kα

}
. (1)

Remark: ◦ Any linear model, with feature embedding ϕ, reduces to this with (K)i,j = ⟨ϕ(xi), ϕ(xj)⟩.
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Example: Kernel ridge regression

Example: ◦ Take L to be the square loss and the kernel to be the Gaussian kernel Kσ(a, b) = exp (a−b)2

2σ2 .

α⋆ ∈ arg min
α∈Rn

{ 1
n

∥Kα − b∥2
2 + λαT Kα

}
.

0 2 4 6 8 10 12 14
data

4

3

2

1

0

1

2

3

4

la
be

ls

KRR = 10
data

0 2 4 6 8 10 12 14
data

4

3

2

1

0

1

2

3

4

la
be

ls

KRR = 1
data

0 2 4 6 8 10 12 14
data

4

3

2

1

0

1

2

3

4

la
be

ls

KRR = 0.01
data

Figure: Kernel ridge regression with decreasing regularization λ

Remark: ◦ The scale parameter σ can be chosen through cross validation or clever heuristics, see [4].
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Computational complexity

Remarks: ◦ The tractable formulation uses the n × n kernel matrix K.
◦ Storage and computational complexity tend to scale with n2 and n3 respectively.
◦ This quickly becomes infeasible for large n.

Approximation methods for large n

◦ Nyström method [13]: substitute K with a low-rank approximation K ≈ UT U where U is r × n for some
r < n.
▶ Storage and computational complexity scale with nr and nr2 respectively.

◦ Random Fourier features [9]: For some translation invariant kernels, it holds that K(a, b) = E[φ(a)φ(b)].
A Monte Carlo approximation of this expectation is obtained by taking D random samples.
▶ Storage and computational complexity scale with nD and nD2 respectively.

Remark: ◦ Large-scale kernel methods are an active research area.

◦ See for instance FALKON [10, 6] which extends Nyström methods to achieve optimal rates.
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Deep Learning’s recent interest in kernel theory

◦ For convenience, we deviate from the course’s notation of neural networks and write h(a, x) for hx(a)

First order Taylor approximation
Consider a neural network h : a 7→ h(a, x) initialized with the weights x0. A first-order Taylor expansion of
around x0 yields

h0(a, x) = hx(a, x0) + ⟨
∂h

∂x
(a, x0), x − x0⟩

Remarks: ◦ h0 is an affine function of the weights x, so it falls under the well understood family of linear
models.
◦ If h is close to h0, then theorems for linear models would transfer to f .

Under which conditions is a neural network h is close to h0, its linearization at initialization ?
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The Neural Tangent Kernel

Observations: ◦ The approximation h0 is a linear model over features of the data: the training samples are
embedded in a feature space by the mapping a 7→ ∂h

∂x (a, x0).
◦ This feature space can be studied through the kernel

Kx0 (a, b) =
〈

∂h

∂x
(a, x0),

∂h

∂x
(b, x0)

〉
.

◦ The initialization x0 is random, so the kernel Kx0 is also random.

The Neural Tangent Kernel (See [5] Thm 1 or [2] Thm 3.1 for a precise statement.)
Under appropriately scaled random initialization x0, the random kernel Kx0 tends to a deterministic kernel K∞
as the width of the network goes to infinity:

lim
width→∞

Kx0 = K∞

This deterministic limiting kernel is called the Neural Tangent Kernel (NTK).

◦ For sufficiently wide networks, we can study this deterministic kernel and derive properties on h0 .
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The NTK in practice

◦ From a theory perspective, NTK theory is used to prove global convergence of first-order methods in neural
network training [3].
Remarks: ◦ Explicit formulas for the NTK of both fully-connected and convolutional architectures have

been computed [2].
◦ This makes it possible to solve learning tasks with infinitly wide networks.

Performance of infinitly wide networks on CIFAR-10 [2]
Least-square classification on the CIFAR-10 dataset with the NTK of an 11-layer convolutional network achieves
77% classification accuracy on CIFAR-10. It is still below the accuracy of finite width networks (> 98%).

Remarks: ◦ Two learning regimes:
◦ Neural network regime: parametric model for feature learning.
◦ Kernel regime: non-parametric model of size growing with number of samples.
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Transformer attention as a Kernel I

◦ Attention mechanism in Transformers can be reformulated as a form of kernel smoothing [12].

◦ Intuition: both kernel learning and Transformers concurrently process all inputs and calculate the similarity
between them.

Attention Mechanism:

◦ Given a query token bq and a set of key tokens Sbk
, the attention output is the kernel smoothing:

Attention(bq ; M(bq , Sbk
)) =

∑
bk∈M(bq,Sbk

)

K(bq , bk)∑
b′

k
∈M(bq,Sbk

) K(bq , b′
k

)
v(bk).
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Transformer attention as a Kernel II

Key Components:
◦ Kernel function K(·, ·): Measures similarity between tokens. Canonical softmax attention is

K(bq , bk) = exp
(

bqXq(bkXk)⊤
)

.

◦ Set filtering function M(·, ·): Determines relevant tokens. Plays the role of the mask in causal attention.
◦ Value function v(·): Provides the values to be weighted. Usually v(bk) = bkXv .

Remarks:
◦ Attention is computed as learnable kernel functions measuring similarity between input tokens.
◦ Canonical self-attention uses an asymmetric exponential kernel.
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