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Motivation: Feature embeddings

o Feature embeddings serve to map datasets from a set A to a more convenient set H.

o For example, if A is non numerical data, it can be embedded into a subset of RP.

Example

Vector space models of language represent each word with a real-valued vector (Word2vec [7], GloVE [8]).

Word2vec
https://jalammar.github.io/illustrated-word2vec/
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Motivation: Feature embeddings Il

o If A is already numerical, it can also be embedded into a more suitable space.
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Figure: Non-linearly separable data (left). Linearly separable in R® via a, = /a2 + aZ (right).
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Kernels

Kernels (Informal)

Denote by ¢ : A — H the feature embedding that maps data points to a elements of a feature space H.
The kernel K (a,b) is defined as the inner-product between the feature embeddings:

K(a,b) := (¢(a), p(b)).

Remarks: o Roughly speaking, K (a, b) represents the similarity between a and b:

K(a,b) = “Comparison between a and b.”

o The feature embedding ¢ helps measure this similarity.
o Examples of ¢ are given later in the slides.

o In the sequel, we study feature embeddings in spaces H with an inner-product.
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Useful definitions

Inner product for real vector spaces

Let H be an R-vector space. A binary operation denoted (-, -)7; : H X H — R is said to be an inner product if it
verifies the following three properties:

> Linearity: For any f € H, the functions g — (f,g)% and g — (g, f)# are linear.
> Symmetry: For any f,g € H, we have (f,g9)n = (g, f)nu
> Positive definiteness: (f, f)x =0< f =0.

Hilbert space

Let H be an R-vector space that admits an inner product (-, -)3;. The inner-product defines the following norm

on H

If H is complete with respect to this norm, then (#, (-, -)3) is called a Hilbert space.

Remarks: o A complete space is a space with “no holes,” i.e., all Cauchy sequences converge [14].

o See Linear Algebra Supplementary Material for more details.
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Positive definite kernels

From feature embeddings to Kernels [1]
Let ¢ : A — H be a feature embedding into a feature space H the kernel K defined as

K(a,b) := (¢(a), #(b))n
is a positive definte kernel.
Definition
A mapping K : A x A— R is called a positive definite kernel if

> For all a,b € A, K(a,b) = K(b,a).

> For any set of points aj,...,a, € A, the matrix

K;; = K(a;,a;) is positive semi-definite.

Remark: o There exists a rich theory of positive definite kernels: see [11].
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From kernels to embeddings in a feature space

o The converse is true: A positive definite kernel K implicitly defines a feature mapping.

Positive definite Kernels to feature embeddings [1]

Let K : A X A+ R be a positive definite kernel. Then there exists a feature space H and a feature mapping
¢ : A — H such that

Observation: o Defining a positive definite similarity measure between the elements of your dataset

= defining a feature embedding.
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Building positive definite kernels from feature embeddings

Example
Take A =R. For any a € A, we can define the feature embedding ¢ that computes the powers of a:

P(a) := [1 a a® ... as] € RS.
The similarity measure K, as defined as an inner product between elements of RS, such as
K(a,b) := ($(a), (b)))gs = b(a) " $(b)

is a positive definite kernel.
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Embeddings in a feature space: continued example

Example
To prove this, consider a set of points ai,...,an € A, then for any x € R", we have
c Z1 n n n n
[$1 $n} K(ai, a;) S = ZZmiij(ai,aj) = ZZ:&IJ (#(ai), #(a;))gs
Zn i=1 j=1 i=1 j=1
n n
= in¢(az‘), Zxﬂﬁ(aj)
i=1 j=1 R6

=1 mid(ai) 26 > 0.
=1
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Possibly infinite dimensional spaces

Example
Take A = (—1,1). For any a € A, we can define a feature embedding ¢ that computes the all the powers of a:

¢(a) == (a")2,.
We can then define the kernel

K (a,0) i= (6(a), (b)) = Y _ $la)igp(b); = ﬁ ‘
1=0

Observation: o The feature embedding need not be finite dimensional.
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Positive definite kernels 11

o New kernels can be constructed from existing kernels.

Kernel operations

Let K1, K2 be positive definite kernels
(PDKs), then it holds that

> Ki + K> is a PDK.

> KlKQ is a PDK.

> For any A > 0, AK; is a PDK.

Table: Table of commonly used kernels (K, is the Bessel function of order
v, ¢, d are the bias and degree respectively, o2 is the Gaussian bandwidth,
1, € are length scales, T is the period)

Name A Kernel
Linear RP a'b
Polynomial ~ RP (aTh +¢)?

; —lla—b]|?
Gaussian RP exp — 5 —

v

Matern RP W (@d(a7 b)) K, (@d(a, b))
Laplace RP exp —lla=bll

02 W
Periodic R o exp fw
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A special feature space of interest: the RKHS

o Given a positive definite kernel K, there can be several feature spaces H such that
o However, there exists a unique Hilbert space H of functions A — R that verify the property below.
o In this case, the embedding ¢ maps each datapoint a to a function ¢k (a) = (b — K(a,b))

Reproducing Kernel Hilbert Space (RKHS) [1]

Let K be a positive definite kernel. There exists a unique Hilbert space H C {functions A — R} such that the
following properties hold:

1. For all a € A, the embedding ¢x (a) = (b — K(a,b)) is in H.
2. The reproducing property: Vf € H,Va € A, f(a) = (¢ (a), f)n.
The space H is called a Reproducing Kernel Hilbert Space (RKHS) and K is called the reproducing kernel of H.
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The reproducing property

Example

We continue the example of the feature map ¢(a) = [1 a a® ... aﬂ € RS.

Now define the function
fla) = zo 4+ z1a+ - - + xz50°.

This function is a member of a space of functions mapping from A = RS to R. f can be equivalently
represented as

f(-):[a:o 1 ... a:g,].

With the above notation, we can write
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Optimizing over the RKHS

o The RKHS is a space of functions that can be used as a hypothesis space for classification, regression, etc.

ERM over an RKHS

We can consider the problem of minimizing the empirical risk over H:

n
1
h* € argmin { Ry (h) :== — L(h(a;),b;)
heH " e Z o
j=1
Remarks: o The space of functions H is not necessarily finite dimensional!

o A priori, this optimization problem is not implementable.
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Towards implementation: A first observation

Observation

Notice that the objective function only depends on the evaluations of f on the points aj,...,a,:

Ru(h) = % 3 Lin(a), by).
j=1

Remarks: o Using the reproducing property we can write the objective as a function of inner-products:
1 n
Ru(h) = = " L((h. & (). b7).
j=1

o The function h is only seen through its inner products with {¢x (a1),...,¢x(an)}

o This observation is key to proving the representer theorem (next slide).
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The Representer Theorem (Informal)

The Representer Theorem [1]

Consider the following regularized version of our optimization problem

1 .
h* € argmin { — L(h(a;),b;)+A|h]|2

where A > 0 is some chosen parameter and L is convex. This strongly convex problem admits a unique solution
h*. The representer theorem states that this solution lives in the span{¢x(ai),...,¢x(an)}. In other words,

there exists a, ..., an such that
n
h* = ZaiK(ai, s
i=1

where K is the reproducing kernel of .

Remark: o The solution h* lies in a finite dimensional subspace.

o The resulting is a non-parametric model.
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Implications of the representer theorem

Tractable formulation

Let K denote the symmetric, positive semi-definite matrix K = (K (a;,a;));,;. Regularized ERM over the
RKHS H reduces to the following finite dimensional problem:

n
1
a* € argmin{ — Z L([Kal;,b;) + AaTKa ;. (1)
aeR™ UG,
j=1
Remark: o Any linear model, with feature embedding ¢, reduces to this with (K); j = (¢(x;), #(x;)).
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Example: Kernel ridge regression

. —b)?
Example: o Take L to be the square loss and the kernel to be the Gaussian kernel K (a,b) = exp (a202)
* : 1 2 T
o* € argmin 4 —||Ka — b||5 + da” Ka ¢ .
aER™ n
R .-'.‘ {,' R ..*:' ..'.. ..-'-
e h - - -~ -
Figure: Kernel ridge regression with decreasing regularization A
Remark: o The scale parameter o can be chosen through cross validation or clever heuristics, see [4].
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Computational complexity

Remarks: o The tractable formulation uses the n X n kernel matrix K.
o Storage and computational complexity tend to scale with n? and n3 respectively.

o This quickly becomes infeasible for large n.

Approximation methods for large n

o Nystrém method [13]: substitute K with a low-rank approximation K ~ U7 U where U is r x n for some
r<n.
> Storage and computational complexity scale with nr and nr? respectively.

o Random Fourier features [9]: For some translation invariant kernels, it holds that K (a, b) = E[¢(a)¢(b)].
A Monte Carlo approximation of this expectation is obtained by taking D random samples.

> Storage and computational complexity scale with n.D and nD? respectively.

Remark: o Large-scale kernel methods are an active research area.

o See for instance FALKON [10, 6] which extends Nystrém methods to achieve optimal rates.
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Deep Learning’s recent interest in kernel theory

o For convenience, we deviate from the course’s notation of neural networks and write h(a, x) for hx(a)

First order Taylor approximation

Consider a neural network h : a — h(a,x) initialized with the weights xq. A first-order Taylor expansion of
around xg yields

oh
ho(a,x) = hx(a,x0) + <8—x(a,xo),x — X0)

Remarks: o hg is an affine function of the weights x, so it falls under the well understood family of linear
models.
o If h is close to hg, then theorems for linear models would transfer to f.

Under which conditions is a neural network h is close to hg, its linearization at initialization ?
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The Neural Tangent Kernel

Observations: o The approximation hg is a linear model over features of the data: the training samples are

embedded in a feature space by the mapping a — %(a,xg).

o This feature space can be studied through the kernel

oy (a,1) = (52 (@, x0), 5 (b, x0) )

o The initialization xq is random, so the kernel K, is also random.

The Neural Tangent Kernel (See [5] Thm 1 or [2] Thm 3.1 for a precise statement.)

Under appropriately scaled random initialization xg, the random kernel Kx, tends to a deterministic kernel K,
as the width of the network goes to infinity:

lim  Kxy = Koo

width— oo
This deterministic limiting kernel is called the Neural Tangent Kernel (NTK).

o For sufficiently wide networks, we can study this deterministic kernel and derive properties on hg .
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The NTK in practice

o From a theory perspective, NTK theory is used to prove global convergence of first-order methods in neural
network training [3].

Remarks: o Explicit formulas for the NTK of both fully-connected and convolutional architectures have
been computed [2].

o This makes it possible to solve learning tasks with infinitly wide networks.

Performance of infinitly wide networks on CIFAR-10 [2]

Least-square classification on the CIFAR-10 dataset with the NTK of an 11-layer convolutional network achieves
77% classification accuracy on CIFAR-10. It is still below the accuracy of finite width networks (> 98%).

Remarks: o Two learning regimes:
o Neural network regime: parametric model for feature learning.

o Kernel regime: non-parametric model of size growing with number of samples.
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Transformer attention as a Kernel |

o Attention mechanism in Transformers can be reformulated as a form of kernel smoothing [12].

o Intuition: both kernel learning and Transformers concurrently process all inputs and calculate the similarity
between them.

Attention Mechanism:

o Given a query token bg and a set of key tokens Sy, , the attention output is the kernel smoothing:

K(bg, br)

Attention(bg; M(bg, S, )) = Z

’U(bk).
Zb’ M(by,S K(
b €M (bg,Sp, ) wEM(bg,Sp,)

bqv b;c)
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Transformer attention as a Kernel Il

Key Components:
o Kernel function K (-,-): Measures similarity between tokens. Canonical softmax attention is

K(bg,by) = exp (quq(bkxk)T).
o Set filtering function M (-,-): Determines relevant tokens. Plays the role of the mask in causal attention.

o Value function v(-): Provides the values to be weighted. Usually v(by) = bpX,.

Remarks:
o Attention is computed as learnable kernel functions measuring similarity between input tokens.

o Canonical self-attention uses an asymmetric exponential kernel.
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